

Choosing SPECT or PET for stable chest pain

Dr Parthiban Arumugam Consultant Nuclear Medicine Physician Manchester University NHS Foundation Trust

Outline

- Perfusion imaging PET tracers and Rb imaging protocol
- Case examples
 - SPECT versus PET (relative perfusion images)Clinical value of blood flow measurement
- Literature and Guidelines

Cardiac perfusion PET radionuclides

	¹³ N ammonia	
	9.96 minutes	76 seconds
Imaging duration	10 – 20 min	6 – 10 min
Administered Activity (3D Scanner)	740 MBq (20 mCi)	740 – 1480 MBq (20 – 40 mCi)
Production	Cyclotron	Generator
Typical distances to annihilation	0.26 - 0.62 mm	0.56 – 1.43 mm
Image resolution	Excellent	Good
First pass extraction fraction	80%	65%
Perfusion defect contrast	Excellent	Good
Pharmacological stress	Routine	Routine
Treadmill exercise	Possible (Static/Gated Only)	Technically challenging

Equipment

CardioGen-82 generator – Rubidium (half life 75 seconds)

PET CT Scanner

Acquisition Protocol – 20 minutes

Relative perfusion assessment Manchester U

STRESS

Adequate flow despite narrowing

Demand outstrips supply – regional reduction

Relative perfusion assessment Manchester U

STRESS

Reduced global flow – global balanced reduction

Reduced global flow – global balanced reduction

Manchester University NHS Foundation Trust

Dynamic Images

Coronary Blood Flow Manchester University

PET Quantitative assessment Manchester University

Rubidium

Myocardial Flow Reserve = Stress MBF / Rest MBF

Normal Ranges Rest MBF: 0.6 – 1.3 ml/gm/min Stress MBF: 1.2 – 3.3 ml/gm/min

	Stress		Rest		Reserve	
	mean	std dev.	mean	std dev.	mean	std dev
LAD	2.47	0.61	0.93	0.17	2.67	0.63
LCX	2.42	0.58	0.90	0.23	2.72	0,33
RCA	2.81	0,70	0.93	0.26	3.10	0.54
Global	2.53	0.64	0.92	0.21	2.79	0.57

TP

- 62 female
- Typical angina.
- Normal BMI
- No reversible risk factors for CAD

Manchester University NHS Foundation Trust

Perfusion Images

Tc-99m SPECT NAC

NHS Foundation Trust

Perfusion Images

Manchester University NHS Foundation Trust

Perfusion Images

Rb-82 PET

NHS Foundation Trust

Perfusion Images

Tc-99m SPECT

Rb-82 PET

Slices NAC

Tc-99m SPECT NAC

Polar Plot

Slices AC

Tc-99m SPECT AC

Rb PET

NHS Foundation Trust

Perfusion Images

Tc-99m SPECT

Rb-82 PET

- 68 year old male
- Exertional angina
- Risk factors for CAD
 - Hyperlipidaemia
 - Age
- Uneventful SPECT Adenosine stress protocol

Manchester University NHS Foundation Trust

Perfusion Images

Tc-99m SPECT

Manchester University NHS Foundation Trust

Perfusion Images

Rb-82 PET

NHS Foundation Trust

Perfusion Images

Tc-99m SPECT

Rb-82 PET

Manchester University NHS Foundation Trust

Rest SPECT images

Rb

Stress	ART SEP OLAT O O O O O O O O STRESS_ACSC
Rest	SUPINE ANT SEP OLAT O O O O O O INF REST_ACSC
Stress	
Rest	Apical Short Axis Basal>
Stress	ANT BASE DEX D D D D D D D D D D D D D D D D D
Rest	REST_ACSC
Stress	SUPRE SEP AT AT A A A A A A A A A A A A A A A A
Rest	SEP ASE REST ACSC

Manchester University NHS Foundation Trust

Case example – Suspected CAD

- 79 year old female
- Atypical angina
- No reversible risk factors for CAD
- High coronary calcium (UK NICE guidelines)
- Cannot exercise

Calcium score CT

Calcium score

Artery	Number of Lesions (1)	Volume [mm³] (3)	Equiv. Mass [mg CaHA] (4)	Calcium Score (2)
LM	0	0.0	0.00	0.0
LAD	2	253.4	60.47	391.2
CX	1	104.3	25.20	156.9
RCA	7	353.3	89.17	418.9
Total	10	711.0	174.84	966.9

Rb-82 PET Perfusion Images

Absolute Blood Flow Measurement

	QMP (ml/g/min)					
	Stress		Rest		Reserve	
	mean	std dev.	mean	std dev.	mean	istdidev.
LAD	2.47	0.61	0.93	0.17	2.67	0.63
LCX	2.42	0.58	0.90	0.23	2.72	0,33
RCA	2.81	0.70	0.93	0.26	3.10	0.54
Global	2.53	0.64	0.92	0.21	2.79	0.57

Case example – suspected CAD

- Age and gender: 63 year old male
- Reason for study: Atypical Chest Pain and LBBB
- Risk factors: current smoker, family history of premature CAD and high BMI (33)
- Meds: Aspirin, Bisiprolol and S/L GTN

Relative perfusion Images

Myocardial Blood Flow (MBE University Siemens MBF

Coronary Angiography Manchester University

In view of multivessel disease, patient was referred for CABG

Case example - High BMI

- 61-year old female
- Atypical chest pain status post primary PCI to RCA following presentation with inferior MI one year prior
- High BMI (height 1.58 m and weight 154 kg, BMI 62 kg/m²)

Manchester University

Invasive Coronary Angiography NSTEMI Primary PCI

Pre PCI

Post PCI

CT Chest Showing Significant Tissue Interposition Between Mediastinum and Chest Wall

Relative Perfusion Images

Myocardial Blood Flow

MB

- 63 Female
- Recurrent chest pain
- Troponin negative
- Hypertension, hyperlipidaemia and ex smoker

Stress SPECT

Rubidium relative perfusion images

Blood flow

	Flow (ml/g/min)				Deserve	
	Str	ess	Rest		Reserve	
	mean	std dev.	mean	std dev.	mean	std dev.
LAD	3.19	0.74	1.52	0.34	2.11	0.32
LCX	2.86	1.25	1.44	0.51	1.92	0.37
RCA	1.66	0.81	1.22	0.33	1.30	.38
Global	2.73	1.11	1.42	0.41	1.86	0.47

Left circulation

RCA

State of the art SPECT versus PET

Bateman T, Heller GV, McGhie I et al. (2006). Diagnostic Accuracy of Rest/Stress ECG-gated Rubidium-82 Myocardial Perfusion PET: Comparison with ECG-gated Tc-99m-Sestamibi SPECT. J Nucl Cardiol. 13(1):24-33.

Manchester University NHS Foundation Trust

ROC – McArdle et al

McArdle et al. (2012). Does rubidium-82 PET have superior accuracy to SPECT perfusion imaging for the diagnosis of obstructive coronary disease?: A systematic review and meta-analysis. J Am Coll Cardiol. 60(18):1828-37.

Manchester University NHS Foundation Trust

ROC – Parker et al

Parker et al. (2012). Diagnostic accuracy of cardiac positron emission tomography versus single photon emission computed tomography for coronary artery disease: a bivariate meta-analysis. Circ Cardiovasc Imaging. 5(6):700-7.

European Heart Journal (2019) 0, 1–11 doi:10.1093/eurbearti/ebz389

ESC

Krishna K. Patel^{1,2a}, John A. Spertus^{1,2}, Paul S. Chan^{1,2}, Brett W. Sperry © ^{1,2}, Firas Al Badarin^{1,2}, Kevin F. Kennedy², Randall C. Thompson^{1,2}, James A. Case³, A. Iain McGhie^{1,2}, and Timotty M. Bateman^{1,2}

¹Department of Cardology, University of Mission - Kanasa City, Kanasa City, MO 64111, UZA, ¹Soliti Lake's Hol America Heart Institute, 4401 Wornall Rd, 9th Roor O Research, Kanasa City, HO 64111, UZA, and ¹Cardonouclar Imaging Technologies, Kanasa City, HO, USA Research Sanasa 2017, Imael To JAy 2019, Related Advisors 17 Min 2019 notagoed 20 Mig 2019

Myocardial blood flow reserve assessed by positron emission tomography myocardial perfusion imaging identifies patients with a survival benefit from early revascularization

Krishna K. Patel^{1,2}*, John A. Spertus^{1,2}, Paul S. Chan^{1,2}, Brett W. Sperry ()^{1,2}, Firas Al Badarin^{1,2}, Kevin F. Kennedy², Randall C. Thompson^{1,2}, James A. Case³, A. Iain McGhie^{1,2}, and Timothy M. Bateman^{1,2}

Department of Cardiology, University of Planout - Kansas City, Konsa City, HO 44111, USA: "Sent Lukin Hol America Hear Research, Kansas City, HO 44111, USA: and "Cardiovascular Insigng Technologies, Kansa City, HO, USA

Figure 5 Hazards for cardiac death with early revascularization compared to medical therapy based on global myocardial blood flow reserve by positron emission tomography myocardial perfusion imaging.

Radiation Dose to Patients (UK administered activity)

^{99m} Tc sestamibi (RR)	Admin. activity 400 MBq X 2 (S+R)	ED (mSv) 8	+CTAC
^{99m} Tc tetrofosmin (RR)	400 MBq x 2 (S+R)	6	
²⁰¹ TI	80 MBq (Str+Redist)	16	
⁸² Rb	2×20 mCi	1.8	2.1

Manchester University NHS Foundation Trust

Dose reduction - 2010

ASNC INFORMATION STATEMENT

Recommendations for reducing radiation exposure in myocardial perfusion imaging

Choice of SPECT vs PET

- SPECT Pro
 - Widely available
 - 'Cheaper' technology

- PET Pro
 - Rapid throughput
 - Fixed cost
 - Superior diagnostic accuracy
 - Reduced downstream costs
 - Societal benefit –
 reduced radiation to
 patients and staff